Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.718
Filter
1.
J Vis Exp ; (206)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38709074

ABSTRACT

Utilizing vegetable oil as a sustainable feedstock, this study presents an innovative approach to ultrasonic-assisted transesterification for biodiesel synthesis. This alkaline-catalyzed procedure harnesses ultrasound as a potent energy input, facilitating the rapid conversion of extra virgin olive oil into biodiesel. In this demonstration, the reaction is run in an ultrasonic bath under ambient conditions for 15 min, requiring a 1:6 molar ratio of extra virgin olive oil to methanol and a minimum amount of KOH as the catalyst. The physiochemical properties of biodiesel are also reported. Emphasizing the remarkable advantages of ultrasonic-assisted transesterification, this method demonstrates notable reductions in reaction and separation times, achieving near-perfect purity (~100%), high yields, and negligible waste generation. Importantly, these benefits are achieved within a framework that prioritizes safety and environmental sustainability. These compelling findings underscore the effectiveness of this approach in converting vegetable oil into biodiesel, positioning it as a viable option for both research and practical applications.


Subject(s)
Biofuels , Plant Oils , Plant Oils/chemistry , Esterification , Hydroxides/chemistry , Olive Oil/chemistry , Ultrasonic Waves , Potassium Compounds/chemistry , Catalysis
2.
Int J Biol Macromol ; 266(Pt 1): 131193, 2024 May.
Article in English | MEDLINE | ID: mdl-38552703

ABSTRACT

Beyond the conventional consideration of pretreatment severity (PS) responsible for biomass disruption, the influence of reagent properties on biomass (LCB) disruption is often overlooked. To investigate the LCB disruption as a function of reagent properties, reagents with distinct cations (NaOH and KOH) and significantly higher delignification potential were chosen. NaOH solution (3 % w/v) with a measured pH of 13.05 ± 0.01 is considered the reference, against which a KOH solution (pH = 13.05 ± 0.01) was prepared for LCB pretreatment under the same PS. Despite comparable lignin content, varying glucose yield of NaOH (68.76 %) and KOH (46.88 %) pretreated residues indicated the presence of heterogeneously disrupted substrate. Holocellulose extracted from raw poplar (ASC, control) and alkaline pretreated residues (C-NaOH and C-KOH) were analyzed using HPLC, XRD, SEM, TGA/DTG, XPS, and 13CP MAS NMR to investigate the pretreatment-induced structural modification. Results revealed that, despite the same pretreatment severity, better disruption in C-NaOH (higher accessible fibril surface and less-ordered region) leading to higher digestibility than C-KOH, likely due to the smaller ionic radius of Na+, facilitates better penetration into dense LCB matrix. This study elucidates the importance of considering the reagent properties during LCB pretreatment, eventually enhancing consciousness while selecting reagents for efficient LCB utilization.


Subject(s)
Biomass , Hydroxides , Lignin , Sodium Hydroxide , Lignin/chemistry , Sodium Hydroxide/chemistry , Hydroxides/chemistry , Hydrolysis , Populus/chemistry , Potassium Compounds/chemistry , Indicators and Reagents/chemistry , Hydrogen-Ion Concentration
3.
Molecules ; 27(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35807560

ABSTRACT

The use of alkynyl gold(I) complexes covers different research fields, such as bioinorganic chemistry, catalysis, and material science, considering the luminescent properties of the complexes. Regarding this last application, we report here the synthesis of three novel dinuclear gold(I) complexes of the general formula [(diNHC)(Au-C≡CPh)2]: two Au-C≡CPh units are connected by a bridging di(N-heterocyclic carbene) ligand, which should favor the establishment of semi-supported aurophilic interactions. The complexes can be easily synthesized through mechanochemistry upon reacting the pristine dibromido complexes [(diNHC)(AuBr)2] with phenylacetylene and KOH. Interestingly, we were also able to isolate the monosubstituted complex [(diNHC)(Au-C≡CPh)(AuBr)]. The gold(I) species were fully characterized by multinuclear NMR spectroscopy and mass spectrometry. The emission properties were also evaluated, and the salient data are comparable to those of analogous compounds reported in the literature.


Subject(s)
Coordination Complexes/chemistry , Gold/chemistry , Luminescence , Acetylene/analogs & derivatives , Acetylene/chemistry , Ethylene Dibromide/chemistry , Hydroxides/chemistry , Ligands , Magnetic Resonance Spectroscopy , Mass Spectrometry , Potassium Compounds/chemistry
4.
Sci Rep ; 12(1): 2003, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35132095

ABSTRACT

The present article describes the design, synthesis, in vitro urease inhibition, and in silico molecular docking studies of a novel series of nitrothiazolacetamide conjugated to different thioquinazolinones. Fourteen nitrothiazolacetamide bearing thioquinazolinones derivatives (8a-n) were synthesized through the reaction of isatoic anhydride with different amine, followed by reaction with carbon disulfide and KOH in ethanol. The intermediates were then converted into final products by treating them with 2-chloro-N-(5-nitrothiazol-2-yl)acetamide in DMF. All derivatives were then characterized through different spectroscopic techniques (1H, 13C-NMR, MS, and FTIR). In vitro screening of these molecules against urease demonstrated the potent urease inhibitory potential of derivatives with IC50 values ranging between 2.22 ± 0.09 and 8.43 ± 0.61 µM when compared with the standard thiourea (IC50 = 22.50 ± 0.44 µM). Compound 8h as the most potent derivative exhibited an uncompetitive inhibition pattern against urease in the kinetic study. The high anti-ureolytic activity of 8h was confirmed against two urease-positive microorganisms. According to molecular docking study, 8h exhibited several hydrophobic interactions with Lys10, Leu11, Met44, Ala47, Ala85, Phe87, and Pro88 residues plus two hydrogen bound interactions with Thr86. According to the in silico assessment, the ADME-Toxicity and drug-likeness profile of synthesized compounds were in the acceptable range.


Subject(s)
Drug Design , Enzyme Inhibitors , Quinazolinones , Urease , Amines/chemistry , Carbon Disulfide/chemistry , Computer Simulation , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Ethanol/chemistry , Hydroxides/chemistry , Molecular Docking Simulation , Oxazines/chemistry , Potassium Compounds/chemistry , Urease/antagonists & inhibitors , Quinazolinones/chemical synthesis , Quinazolinones/chemistry , Quinazolinones/pharmacology
5.
Molecules ; 27(3)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35163992

ABSTRACT

To discover an efficient and convenient method to synthesize C2-arylacylated benzothiazoles as potential drug scaffolds, a novel [bis(trifluoroacetoxy)iodo]benzene(PIFA)/KOH synergistically promoted direct ring-opening C2-arylacylation reaction of 2H-benzothiazoles with aryl methyl ketones has been developed. Various substrates were tolerated under optimized conditions affording the C2-arylacylation products in 70-95% yields for 38 examples. A plausible mechanism was also proposed based on a series of controlled experiments.


Subject(s)
Benzothiazoles/chemistry , Hydroxides/chemistry , Iodobenzenes/chemistry , Potassium Compounds/chemistry , Trifluoroacetic Acid/chemistry , Acetylation , Benzothiazoles/chemical synthesis , Molecular Structure , Oxidation-Reduction
6.
ACS Appl Mater Interfaces ; 14(4): 5425-5438, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35050588

ABSTRACT

The low energy density and low cost performance of electrochemical capacitors (ECs) are the principal factors that limit the wide applications of ECs. In this work, we used enzymatic hydrolysis lignin as the carbon source and an ammonia activation methodology to prepare nitrogen-doped lignin-derived porous carbon (NLPC) electrode materials with high specific surface areas. We elucidated the free radical mechanism of ammonia activation and the relationship between nitrogen doping configurations, doping levels, and preparation temperatures. Furthermore, we assembled NLPC∥NLPC symmetric ECs and NLPC∥Zn asymmetric ECs using aqueous sulfate electrolytes. Compared with the ECs using KOH aqueous electrolyte, the energy densities of NLPC∥NLPC and NLPC∥Zn ECs were significantly improved. The divergence of charge storage characteristics in KOH, Na2SO4, and ZnSO4 electrolytes were compared by analyzing their area surface capacitance. This work provides a strategy for the sustainable preparation of lignin-derived porous carbons toward ECs with high energy densities.


Subject(s)
Ammonia/chemistry , Carbon/chemistry , Electric Capacitance , Lignin/chemistry , Electrodes , Hydroxides/chemistry , Nitrogen/chemistry , Porosity , Potassium Compounds/chemistry , Sulfates/chemistry , Zinc Sulfate/chemistry
7.
Molecules ; 27(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35056771

ABSTRACT

In this work, Norway spruce bark was used as a precursor to prepare activated biochars (BCs) via chemical activation with potassium hydroxide (KOH) as a chemical activator. A Box-Behnken design (BBD) was conducted to evaluate and identify the optimal conditions to reach high specific surface area and high mass yield of BC samples. The studied BC preparation parameters and their levels were as follows: pyrolysis temperature (700, 800, and 900 °C), holding time (1, 2, and 3 h), and ratio of the biomass: chemical activator of 1: 1, 1.5, and 2. The planned BBD yielded BC with extremely high SSA values, up to 2209 m2·g-1. In addition, the BCs were physiochemically characterized, and the results indicated that the BCs exhibited disordered carbon structures and presented a high quantity of O-bearing functional groups on their surfaces, which might improve their adsorption performance towards organic pollutant removal. The BC with the highest SSA value was then employed as an adsorbent to remove Evans blue dye (EB) and colorful effluents. The kinetic study followed a general-order (GO) model, as the most suitable model to describe the experimental data, while the Redlich-Peterson model fitted the equilibrium data better. The EB adsorption capacity was 396.1 mg·g-1. The employment of the BC in the treatment of synthetic effluents, with several dyes and other organic and inorganic compounds, returned a high percentage of removal degree up to 87.7%. Desorption and cyclability tests showed that the biochar can be efficiently regenerated, maintaining an adsorption capacity of 75% after 4 adsorption-desorption cycles. The results of this work pointed out that Norway spruce bark indeed is a promising precursor for producing biochars with very promising properties.


Subject(s)
Azo Compounds/chemistry , Charcoal/chemistry , Graphite/chemistry , Hydroxides/chemistry , Plant Bark/chemistry , Potassium Compounds/chemistry , Adsorption , Biomass , Kinetics , Porosity , Spectrum Analysis , Temperature , Water Pollutants, Chemical
8.
J Phys Chem Lett ; 13(2): 567-573, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35014840

ABSTRACT

Phosphorylation for ribonucleotide formation is a critical step in the origin of life but has had limited success due to the thermodynamic and kinetic constraints in aqueous media. Here, we report that the production of ribonucleotides from ribonucleosides in the presence of monopotassium phosphate (KH2PO4) spontaneously proceeded in aqueous microdroplets under ambient conditions and without using a catalyst. A full set of ribonucleotides including adenosine monophosphate (AMP), guanosine monophosphate (GMP), uridine monophosphate (UMP), and cytidine monophosphate (CMP) were generated on the scale of a few milliseconds. The aqueous microdroplets could transfer the ribonucleotides to oligoribonucleotides and showed mutual compatibility for individual phosphorylation. Conditions established the dependence of the conversion ratio on the droplet size and suggested that the condensation reactions occurred at or near the microdroplets' surface. This aqueous microdroplet approach also provides a route for elucidating phosphorylation chemistry in the prebiotic era.


Subject(s)
Ribonucleotides/chemical synthesis , Phosphates/chemistry , Phosphorylation , Potassium Compounds/chemistry , Ribonucleosides/chemistry , Water/chemistry
9.
Appl Radiat Isot ; 179: 109989, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34736110

ABSTRACT

Activity concentrations of 42 different feldspathic dental ceramic powders were determined using a gamma spectrometer with an HPGe detector. The average 238U, 232Th and 226Ra activity concentrations of the specimens were 126 ± 8 Bq kg-1, 5.6 ± 0.5 Bq kg-1 and 12.7 ± 1.2 Bq kg-1, respectively. The average 40K activity was found as 2855 ± 89 Bq kg-1 ranging from 2252 ± 70 Bq kg-1 to 3522 ± 110 Bq kg-1 due to high potassium content in dental ceramics. None of the activity concentration measurements exceeded the limits by EC and ISO.


Subject(s)
Aluminum Silicates/chemistry , Background Radiation , Ceramics/chemistry , Dental Materials/chemistry , Potassium Compounds/chemistry , Potassium Radioisotopes/analysis , Uranium/analysis
10.
Int J Biol Macromol ; 195: 86-92, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34890635

ABSTRACT

Non-derivatizing, high-efficiency and low-toxicity solvents are important for studying the dissolution behavior and potential applications of starch. In this study, we investigated the starch dissolution mechanism and molecular conformation in KOH/thiourea aqueous solutions and compared these with KOH/urea and KOH aqueous solutions. Solubility analysis revealed that the KOH/thiourea solution demonstrates a better ability to dissolve corn starch than KOH/urea and KOH solutions. Rheological behavior and dynamic and static light scattering indicated that starch is stable in KOH/thiourea solution and exists as a regular star structure. Fourier transform infrared spectroscopy, 13C NMR, and molecular dynamics simulations indicated that hydrated K+ and OH- destroy the strong starch hydrogen bond interactions; thiourea hydrate self-assembles into a shell surrounding the starch-KOH complex through interaction with KOH, whereas there is no direct strong interaction between urea and KOH. Therefore, adding thiourea to a KOH solution can promote dissolution and prevent self-aggregation of the starch chain.


Subject(s)
Hydroxides/chemistry , Potassium Compounds/chemistry , Solvents/chemistry , Starch/chemistry , Thiourea/chemistry , Carbohydrate Conformation , Carbon-13 Magnetic Resonance Spectroscopy , Hydrogen Bonding , Molecular Dynamics Simulation , Rheology , Solubility , Spectroscopy, Fourier Transform Infrared , Water/chemistry
11.
Int J Mol Sci ; 22(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34884702

ABSTRACT

The hydrogen bond structure of water was examined by comparing the temperature dependent OH-stretching bands of water and aqueous NaClO4, KClO4, Na2SO4, and K2SO4 solutions. Results called attention to the role of cations on top of the importance of anions determining the emerging structure of a multi-layered system consisting single water rings or multi-ring water-clusters.


Subject(s)
Perchlorates/chemistry , Potassium Compounds/chemistry , Sodium Compounds/chemistry , Sulfates/chemistry , Water/chemistry , Hydrogen Bonding , Temperature
12.
Acta Chim Slov ; 68(2): 313-319, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34738128

ABSTRACT

Vancomycin, an antimicrobial, does not present quantitative method by infrared spectrometry in the literature for the evaluation of a pharmaceutical product. This technique is considered a clean alternative because in the main, there is no solvent involved and the generation of waste is reduced. So, the aim of this study was to develop and validate a new, ecological, low cost and fast method by infrared spectrometry using KBr and band between 1450-1375 cm-1. It was linear in the range of 1.0-2.0 mg/150 mg, with a correlation coefficient of 0.9994. Selective when the spectra of vancomycin reference and sample were compared. Precise by repeatability (2.29%) and intermediate precision (3.12%). Accurate with average recovery of 99.37% and robust when strength and compression time of the pellets and KBr brand were varied. Considering all the methods found in literature, there is not one using infrared spectrometry for quantitative purpose, so the method developed and validated could be considered an innovation and clean alternative. This is due to the fact that it is fast, easy to handle, low cost, and non-toxic as well as generating minimal waste. The method can be applied in the routine analysis of vancomycin dosage form and is an important option for the current and sustainable pharmaceutical analysis.


Subject(s)
Anti-Bacterial Agents/analysis , Vancomycin/analysis , Bromides/chemistry , Potassium Compounds/chemistry , Spectrophotometry, Infrared
13.
BMC Plant Biol ; 21(1): 361, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34364372

ABSTRACT

BACKGROUND: Priming of seed prior chilling is regarded as one of the methods to promote seeds germination, whole plant growth, and yield components. The application of biostimulants was reported as beneficial for protecting many plants from biotic or abiotic stresses. Their value was as important to be involved in improving the growth parameters of plants. Also, they were practiced in the regulation of various metabolic pathways to enhance acclimation and tolerance in coriander against chilling stress. To our knowledge, little is deciphered about the molecular mechanisms underpinning the ameliorative impact of biostimulants in the context of understanding the link and overlap between improved morphological characters, induced metabolic processes, and upregulated gene expression. In this study, the ameliorative effect(s) of potassium silicate, HA, and gamma radiation on acclimation of coriander to tolerate chilling stress was evaluated by integrating the data of growth, yield, physiological and molecular aspects. RESULTS: Plant growth, yield components, and metabolic activities were generally diminished in chilling-stressed coriander plants. On the other hand, levels of ABA and soluble sugars were increased. Alleviation treatment by humic acid, followed by silicate and gamma irradiation, has notably promoted plant growth parameters and yield components in chilling-stressed coriander plants. This improvement was concomitant with a significant increase in phytohormones, photosynthetic pigments, carbohydrate contents, antioxidants defense system, and induction of large subunit of RuBisCO enzyme production. The assembly of Toc complex subunits was maintained, and even their expression was stimulated (especially Toc75 and Toc 34) upon alleviation of the chilling stress by applied biostimulators. Collectively, humic acid was the best the element to alleviate the adverse effects of chilling stress on growth and productivity of coriander. CONCLUSIONS: It could be suggested that the inducing effect of the pretreatments on hormonal balance triggered an increase in IAA + GA3/ABA hormonal ratio. This ratio could be linked and engaged with the protection of cellular metabolic activities from chilling injury against the whole plant life cycle. Therefore, it was speculated that seed priming in humic acid is a powerful technique that can benefit the chilled along with non-chilled plants and sustain the economic importance of coriander plant productivity.


Subject(s)
Cold-Shock Response/physiology , Coriandrum/growth & development , Plant Growth Regulators/pharmacology , Seeds/growth & development , Acclimatization , Antioxidants/metabolism , Carbohydrate Metabolism , Carbohydrates/analysis , Chloroplast Proteins/metabolism , Cold-Shock Response/drug effects , Cold-Shock Response/radiation effects , Coriandrum/drug effects , Coriandrum/radiation effects , Enzymes/metabolism , Gamma Rays , Humic Substances , Lipid Peroxidation , Pigments, Biological/metabolism , Plant Growth Regulators/metabolism , Potassium Compounds/chemistry , Potassium Compounds/pharmacology , Seeds/drug effects , Seeds/radiation effects
14.
Carbohydr Polym ; 270: 118363, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34364608

ABSTRACT

Finding an efficient and eco-friendly solution for starch dissolution has attracted considerable attentions in recent years. This study investigated the structural characteristics, and degradation behavior of corn starch in KOH/thiourea aqueous solution by the comparison with DMSO/LiBr and 1-allyl-3-methylimidazolium chloride (AMIMCl). Results showed that KOH/thiourea solution was an effective solvent for corn starch dissolution (30 min with 97.01% solubility). X-ray diffraction (XRD) and 13C CP-MAS NMR spectroscopy revealed that native crystallinity of the corn starch was altered by all tested solvents, especially DMSO/LiBr and AMIMCl. Conversely, this new solvent did not change the primary molecular structure, chain-length distribution, or thermal stability of starch, compared with the native starch. Furthermore, KOH/thiourea solution was more suitable for measuring the molecular weight of corn starch, with a weight-average molecular weight (Mw) of 7.18 × 107 g/mol. Therefore, KOH/thiourea solution is a promising novel solvent for starch dissolution and structural exploration.


Subject(s)
Hydroxides/chemistry , Potassium Compounds/chemistry , Starch/chemistry , Thiourea/chemistry , Zea mays/chemistry , Allyl Compounds/chemistry , Bromides/chemistry , Dimethyl Sulfoxide/chemistry , Imidazoles/chemistry , Lithium Compounds/chemistry , Magnetic Resonance Spectroscopy/methods , Molecular Structure , Molecular Weight , Solubility , Solvents/chemistry , Thermogravimetry/methods , Water/chemistry , X-Ray Diffraction/methods
15.
BMC Biotechnol ; 21(1): 47, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34353307

ABSTRACT

BACKGROUND: Although laccase has a good catalytic oxidation ability, free laccase shows a poor stability. Enzyme immobilization is a common method to improve enzyme stability and endow the enzyme with reusability. Adsorption is the simplest and common method. Modified biochar has attracted great attention due to its excellent performance. RESULTS: In this paper, cetyltrimethylammonium bromide (CTAB)-KOH modified biochar (CKMB) was used to immobilize laccase by adsorption method (laccase@CKMB). Based on the results of the single-factor experiments, the optimal loading conditions of laccase@CKMB were studied with the assistance of Design-Expert 12 and response surface methods. The predicted optimal experimental conditions were laccase dosage 1.78 mg/mL, pH 3.1 and 312 K. Under these conditions, the activity recovery of laccase@CKMB was the highest, reaching 61.78%. Then, the CKMB and laccase@CKMB were characterized by TGA, FT-IR, XRD, BET and SEM, and the results showed that laccase could be well immobilized on CKMB, the maximum enzyme loading could reach 57.5 mg/g. Compared to free laccase, the storage and pH stability of laccase@CKMB was improved greatly. The laccase@CKMB retained about 40% of relative activity (4 °C, 30 days) and more than 50% of relative activity at pH 2.0-6.0. In addition, the laccase@CKMB indicated the reusability up to 6 reaction cycles while retaining 45.1% of relative activity. Moreover, the thermal deactivation kinetic studies of laccase@CKMB showed a lower k value (0.00275 min- 1) and higher t1/2 values (252.0 min) than the k value (0.00573 min- 1) and t1/2 values (121.0 min) of free laccase. CONCLUSIONS: We explored scientific and reasonable immobilization conditions of laccase@CKMB, and the laccase@CKMB possessed relatively better stabilities, which gave the immobilization of laccase on this cheap and easily available carrier material the possibility of industrial applications.


Subject(s)
Charcoal/chemistry , Fungal Proteins/chemistry , Laccase/chemistry , Polyporaceae/enzymology , Adsorption , Cetrimonium/chemistry , Enzyme Stability , Enzymes, Immobilized/chemistry , Hydrogen-Ion Concentration , Hydroxides/chemistry , Kinetics , Polyporaceae/chemistry , Potassium Compounds/chemistry , Temperature
16.
PLoS One ; 16(8): e0256290, 2021.
Article in English | MEDLINE | ID: mdl-34403443

ABSTRACT

Direct microscopic examination with potassium hydroxide is generally used as a screening method for diagnosing superficial fungal infections. Although this type of examination is faster than other diagnostic methods, it can still be time-consuming to evaluate a complete sample; additionally, it possesses the disadvantage of inconsistent reliability as the accuracy of the reading may differ depending on the performer's skill. This study aims at detecting hyphae more quickly, conveniently, and consistently through deep learning using images obtained from microscopy used in real-world practice. An object detection convolutional neural network, YOLO v4, was trained on microscopy images with magnifications of 100×, 40×, and (100+40)×. The study was conducted at the Department of Dermatology at Veterans Health Service Medical Center, Seoul, Korea between January 1, 2019 and December 31, 2019, using 3,707 images (1,255 images for training, 1,645 images for testing). The average precision was used to evaluate the accuracy of object detection. Precision recall curve analysis was performed for the hyphal location determination, and receiver operating characteristic curve analysis was performed on the image classification. The F1 score, sensitivity, and specificity values were used as measures of the overall performance. The sensitivity and specificity were, respectively, 95.2% and 100% in the 100× data model, and 99% and 86.6% in the 40× data model; the sensitivity and specificity in the combined (100+40)× data model were 93.2% and 89%, respectively. The performance of our model had high sensitivity and specificity, indicating that hyphae can be detected with reliable accuracy. Thus, our deep learning-based autodetection model can detect hyphae in microscopic images obtained from real-world practice. We aim to develop an automatic hyphae detection system that can be utilized in real-world practice through continuous research.


Subject(s)
Arthrodermataceae/growth & development , Deep Learning , Dermatomycoses/diagnosis , Hyphae/growth & development , Image Interpretation, Computer-Assisted/statistics & numerical data , Arthrodermataceae/ultrastructure , Datasets as Topic , Dermatomycoses/microbiology , Dermatomycoses/pathology , Humans , Hydroxides/chemistry , Hyphae/ultrastructure , Microscopy/methods , Nails/microbiology , Potassium Compounds/chemistry , ROC Curve , Skin/microbiology
17.
Mikrochim Acta ; 188(6): 181, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33954865

ABSTRACT

Simultaneous cathodic and anodic electrochemiluminescence (ECL) emissions of needle-like nanostructures of Ru(bpy)32+ (RuNDs) as the only luminophore are reported based on different co-reactants. Cathodic ECL was attained from RuNDs/K2S2O8 system, while anodic ECL was achieved from RuNDs/black phosphorus quantum dots (BPQDs) system. Ferrocene attached to the hairpin DNA could quench the cathodic and anodic ECL simultaneously. Subsequently, the ECL signals recovered in the presence of tumor marker mucin 1 (MUC1), which made it possible to quantitatively detect MUC1. The variation of ECL signal was related linearly to the concentrations of MUC1 in the range 20 pg mL-1 to 10 ng mL-1, and the detection limits were calculated to 2.5 pg mL-1 (anodic system, 3σ) and 6.2 pg mL-1 (cathodic system, 3σ), respectively. The recoveries were 97.0%, 105%, and 95.2% obtained from three human serum samples, and the relative standard deviation (RSD) is 5.3%. As a proof of concept, this work realized simultaneous ECL emission of  a single luminophore, which initiates a new thought in biomarker ECL detection beyond the traditional ones. Simultaneous cathodic and anodic ECL emissions of RuNDs were reported based on different co-reactants. Ferrocene could quench the ECL emission in the cathode and the anode simultaneously. Thus, an aptasensor was constructed based on the variation of ECL intensity. As a proof of concept, this work realized simultaneous ECL emission of a single luminophore, which initiates a new thought in biomarker ECL detection beyond the traditional ones by avoiding the false positive signals.


Subject(s)
Biomarkers, Tumor/analysis , Biosensing Techniques/methods , Luminescent Agents/chemistry , Mucin-1/analysis , Phosphorus/chemistry , Quantum Dots/chemistry , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics , Biomarkers, Tumor/blood , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/urine , DNA/chemistry , DNA/genetics , Electrochemical Techniques , Humans , Immobilized Nucleic Acids/chemistry , Immobilized Nucleic Acids/genetics , Inverted Repeat Sequences , Limit of Detection , Luminescent Measurements , Mucin-1/blood , Mucin-1/chemistry , Mucin-1/urine , Nanostructures/chemistry , Organometallic Compounds/chemistry , Potassium Compounds/chemistry , Reproducibility of Results , Sulfates/chemistry
18.
Mikrochim Acta ; 188(6): 212, 2021 05 29.
Article in English | MEDLINE | ID: mdl-34052959

ABSTRACT

Silver ion detection with ultra-high sensitivity was established. We synthesized copper nanoclusters (CuNCs) with blue fluorescence through a one-pot process. Instead of a direct quencher toward the CuNCs, silver ions activated the strong oxidation from persulfate and subsequently converted divalent manganese ion into manganese dioxide (MnO2). The surface charges of MnO2 and the CuNCs brought them together and quenched the fluorescence from the latter. Due to silver ions' role as the catalyst in the process, it cycled and even a small amount leads to a significant fluorescence change. This signaling provided the determination of  silver ions in the range 5 pM~1 nM, with a detection limit of  1.2 pM. The method is selective, and its applicability was validated through practical water sample analyses.


Subject(s)
Fluorescent Dyes/chemistry , Metal Nanoparticles/chemistry , Povidone/chemistry , Silver/analysis , Copper/chemistry , Drinking Water/analysis , Fluorescence , Lakes/analysis , Limit of Detection , Manganese/chemistry , Potassium Compounds/chemistry , Spectrometry, Fluorescence/methods , Sulfates/chemistry , Water Pollutants, Chemical/analysis
19.
Ecotoxicol Environ Saf ; 219: 112346, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34022627

ABSTRACT

Modified composite biochar offers a cost-effective solution for the remediation of contaminated sediments; however, few studies have evaluated the effects of modified composite biochar amendment on the ecotoxicity of contaminated sediment based on benthic macroinvertebrates. A 21-day sediment toxicity test was conducted using the freshwater snail Bellamya aeruginosa to examine the intrinsic ecotoxicity of a novel KOH-modified composite biochar (KOH-CBC) and its efficacy for reducing the bioavailability, uptake, and ecotoxicity of perfluorooctanoic acid (PFOA). It was found that KOH-CBC is toxic to B. aeruginosa, which may be attributed to its high polycyclic aromatic hydrocarbons (PAHs) content and alkalinity. The addition of KOH-CBC to PFOA-contaminated sediments can markedly reduce the bioavailability and uptake of PFOA by more than 90% and 50%, respectively, and subsequently alleviate the toxicity of PFOA to B. aeruginosa by at least 30%. Increasing the KOH-CBC dosage is not beneficial for further mitigating the toxicity of PFOA-contaminated sediments. Our findings imply that KOH-CBC is a promising sorbent for the in-situ remediation of PFOA-contaminated sediments. Application of acidified KOH-CBC at a dosage of approximately 1-3% will be sufficient to control the ecotoxicity of PFOA; however, its long-term environmental effects should be further validated.


Subject(s)
Caprylates/toxicity , Environmental Restoration and Remediation/methods , Fluorocarbons/toxicity , Biological Availability , Charcoal , Geologic Sediments , Hydroxides/chemistry , Polycyclic Aromatic Hydrocarbons/toxicity , Potassium Compounds/chemistry , Pseudomonas aeruginosa
20.
Molecules ; 26(6)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33803018

ABSTRACT

An efficient method for the synthesis of pharmaceutically prospective pyrrole-aminopyrimidine ensembles (in up to 91% yield) by the cyclocondensation of easily available acylethynylpyrroles with guanidine nitrate has been developed. The reaction proceeds under heating (110-115 °C, 4 h) in the KOH/DMSO system. In the case of 2-benzoylethynylpyrrole, the unexpected addition of the formed pyrrole-aminopyrimidine as N- (NH moiety of the pyrrole ring) and C- (CH of aminopyrimidine) nucleophiles to the triple bond is observed.


Subject(s)
Cycloaddition Reaction/methods , Guanidines/chemistry , Pyrimidines/chemistry , Pyrroles/chemistry , Dimethyl Sulfoxide/chemistry , Hot Temperature , Hydroxides/chemistry , Potassium Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...